課程目錄

二、知識(shí)概念:

1.三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形。

2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

3.高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高。

4.中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn)。

5.角平分線(xiàn):三角形的一個(gè)內(nèi)角的平分線(xiàn)與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn)。

6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。

7.多邊形:在平面內(nèi),由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形。

8.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

9.多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線(xiàn)組成的角叫做多邊形的外角。

10.多邊形的對(duì)角線(xiàn):連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對(duì)角線(xiàn)。

11.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形。

12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

13.公式與性質(zhì):

⑴三角形的內(nèi)角和:三角形的內(nèi)角和為180°

⑵三角形外角的性質(zhì):

性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

⑶多邊形內(nèi)角和公式:邊形的內(nèi)角和等于·180°

⑷多邊形的外角和:多邊形的外角和為360°

⑸多邊形對(duì)角線(xiàn)的條數(shù):①?gòu)倪呅蔚囊粋(gè)頂點(diǎn)出發(fā)可以引條對(duì)角線(xiàn),把多邊形分成個(gè)三角形②邊形共有條對(duì)角線(xiàn)

第十二章  全等三角形

一、知識(shí)框架:

二、知識(shí)概念:

1.基本定義:

⑴全等形:能夠完全重合的兩個(gè)圖形叫做全等形。

⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形。

⑶對(duì)應(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn)。

⑷對(duì)應(yīng)邊:全等三角形中互相重合的邊叫做對(duì)應(yīng)邊。

⑸對(duì)應(yīng)角:全等三角形中互相重合的角叫做對(duì)應(yīng)角。

2.基本性質(zhì):

⑴三角形的穩(wěn)定性:三角形三邊的長(zhǎng)度確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性。

⑵全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。

3.全等三角形的判定定理:

⑴邊邊邊(SSS):三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

⑵邊角邊(SAS):兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。

⑶角邊角(ASA):兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

⑷角角邊(AAS):兩角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

⑸斜邊、直角邊(HL):斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。

4.角平分線(xiàn):

⑴畫(huà)法:

⑵性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等。    

⑶性質(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線(xiàn)上。

5.證明的基本方法:

⑴明確命題中的已知和求證(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線(xiàn)、中線(xiàn)、高、等腰三角形等所隱含的邊角關(guān)系)

⑵根據(jù)題意,畫(huà)出圖形,并用數(shù)字符號(hào)表示已知和求證。

⑶經(jīng)過(guò)分析,找出由已知推出求證的途徑,寫(xiě)出證明過(guò)程。

第十三章  軸對(duì)稱(chēng)

一、知識(shí)框架:

二、知識(shí)概念:

1.基本概念:

⑴軸對(duì)稱(chēng)圖形:如果一個(gè)圖形沿一條直線(xiàn)折疊,直線(xiàn)兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱(chēng)圖形。

⑵兩個(gè)圖形成軸對(duì)稱(chēng):把一個(gè)圖形沿某一條直線(xiàn)折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng)。

⑶線(xiàn)段的垂直平分線(xiàn):經(jīng)過(guò)線(xiàn)段中點(diǎn)并且垂直于這條線(xiàn)段的直線(xiàn),叫做這條線(xiàn)段的垂直平分線(xiàn)。

⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。

⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形。

2.基本性質(zhì):

⑴對(duì)稱(chēng)的性質(zhì):

①不管是軸對(duì)稱(chēng)圖形還是兩個(gè)圖形關(guān)于某條直線(xiàn)對(duì)稱(chēng),對(duì)稱(chēng)軸都是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線(xiàn)段的垂直平分線(xiàn)。

②對(duì)稱(chēng)的圖形都全等

⑵線(xiàn)段垂直平分線(xiàn)的性質(zhì):

①線(xiàn)段垂直平分線(xiàn)上的點(diǎn)與這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

②與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線(xiàn)段的垂直平分線(xiàn)上

⑶關(guān)于坐標(biāo)軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)性質(zhì)

①點(diǎn)P(x,y)關(guān)于軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為

②點(diǎn)P(x,y)關(guān)于軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為

⑷等腰三角形的性質(zhì):

①等腰三角形兩腰相等

②等腰三角形兩底角相等(等邊對(duì)等角)

③等腰三角形的頂角角平分線(xiàn)、底邊上的中線(xiàn),底邊上的高相互重合

④等腰三角形是軸對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸是三線(xiàn)合一(1條

⑸等邊三角形的性質(zhì):

①等邊三角形三邊都相等

②等邊三角形三個(gè)內(nèi)角都相等,都等于60°

③等邊三角形每條邊上都存在三線(xiàn)合一

④等邊三角形是軸對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸是三線(xiàn)合一(3條)

3.基本判定:

⑴等腰三角形的判定:

①有兩條邊相等的三角形是等腰三角形

②如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

⑵等邊三角形的判定:

①三條邊都相等的三角形是等邊三角形

②三個(gè)角都相等的三角形是等邊三角形

③有一個(gè)角是60°的等腰三角形是等邊三角形

4.基本方法:

⑴做已知直線(xiàn)的垂線(xiàn):

⑵做已知線(xiàn)段的垂直平分線(xiàn):

⑶作對(duì)稱(chēng)軸:連接兩個(gè)對(duì)應(yīng)點(diǎn),作所連線(xiàn)段的垂直平分線(xiàn)

⑷作已知圖形關(guān)于某直線(xiàn)的對(duì)稱(chēng)圖形:

⑸在直線(xiàn)上做一點(diǎn),使它到該直線(xiàn)同側(cè)的兩個(gè)已知點(diǎn)的距離之和最短。

課程聯(lián)系1:
大學(xué)資源網(wǎng)客服

課程聯(lián)系2:
大學(xué)資源網(wǎng)客服

課程聯(lián)系3:
大學(xué)資源網(wǎng)客服

服務(wù)時(shí)間:
8:00-21:00(工作日)

东丰县| 宁河县| 麦盖提县| 中方县| 绍兴市| 凌海市| 龙海市| 谷城县| 宁乡县| 奈曼旗| 南涧| 正蓝旗| 长兴县| 抚宁县| 固安县| 朔州市| 响水县| 永德县| 高淳县| 北安市| 仁化县| 广水市| 韶关市| 辉南县| 化隆| 高雄市| 甘德县| 图片| 洛扎县| 比如县| 洪雅县| 兖州市| 延津县| 阳新县| 崇礼县| 太白县| 荣昌县| 卫辉市| 武威市| 宁远县| 项城市|