課程目錄

1.Pytorch簡介:        

Pytorch是Python里的用來進行深度學(xué)習(xí)的框架,能夠在強大的GPU加速基礎(chǔ)上實現(xiàn)張量和動態(tài)神經(jīng)網(wǎng)絡(luò),如果沒有GPU,也支持CPU版本的。它的一大優(yōu)勢就是動態(tài)計算特征,也就是計算圖在運行的時候創(chuàng)建。目前市場上支持動態(tài)計算的框架有Pytorch、DyNet、Chainer,而支持靜態(tài)圖計算的框架有TensorFlow,MXNet,Theano。        

Pytorch本質(zhì)上是支持GPU的Numpy替代,提供了用來創(chuàng)建和訓(xùn)練神經(jīng)網(wǎng)絡(luò) 的高級API。要想快速上手它,需要熟悉Numpy、Python和深度學(xué)習(xí)的一些基本概念。

2.學(xué)習(xí)途徑:        

目前網(wǎng)上關(guān)于Pytorch的教程真的是名目繁多,怎么選擇一個通俗易懂、系統(tǒng)化的的教程就顯得尤為重要。小編結(jié)合自身對Pytroch的學(xué)習(xí),以及對學(xué)習(xí)資源的篩選,下面為讀者提供一些專業(yè)的學(xué)習(xí)網(wǎng)站,希望可以方便大家更好的學(xué)習(xí)。       

1.Pytorch官網(wǎng):Pytorch官網(wǎng)可以直接百度:pytorch,第一個就是官方文檔。官網(wǎng)是對Pytorch最權(quán)威、最全面、最官方的解讀。常用的接口與功能在這里都可以找到對應(yīng)的說明。平時多看看官方文檔,可以學(xué)到別的地方學(xué)不到的一些東西。        

2.github:  這是一個開源的入門級的pytorch教程,簡單,實用(由于公眾號文章不能引用外部鏈接,想要學(xué)習(xí)這個的話,直接復(fù)制路徑所有即可)        

3.莫煩Python:  直接百度莫煩Python,就可以找見。莫煩教程里面涵蓋了深度學(xué)習(xí)常用的框架視頻和代碼。小編自認為這個教程最合適新手的入門,詳細的文檔、全面的視頻講解、還配備了對應(yīng)的視頻代碼,值得去系統(tǒng)的學(xué)習(xí)。

3.Pytorch的安裝:

Pytorch0.4.0之前只支持MacOS和Linux兩種系統(tǒng),并且支持多種安裝方式,Pytorch0.4.0之后開始支持Windows系統(tǒng)。官網(wǎng)上介紹基于conda、pip和源碼編譯幾種不同的安裝方式。支持的版本有python2.7、python3.5和python3.6。鑒于深度學(xué)習(xí)需要的計算一般比較大,強烈建議找一個獨立顯卡的電腦展開學(xué)習(xí),當(dāng)然要是沒有顯卡,就是計算速度會大大降低。小編安裝了一個Ubuntun16.04的雙系統(tǒng),而且本機沒有顯卡,所以環(huán)境的搭建與后邊代碼都是基于CPU下Ubuntu完成的。由于已經(jīng)習(xí)慣了使用  mkvirtulenv來管理自己的環(huán)境(conda可以下載非python的安裝包,當(dāng)前這個環(huán)境所使用的包都是python包,所以在這個環(huán)境里兩者無差別)。環(huán)境搭建提供mkvirtulenv和conda兩種安裝方式。

下面這個圖來源屬于Pytorch官網(wǎng),操作系統(tǒng)、安裝包管理工具、Python版本和CUDA分別可以根據(jù)自己的電腦配置來選擇

1. Introduction to pytoch:

Pytorch is a framework used for deep learning in Python. It can realize tensor and dynamic neural network on the basis of powerful GPU acceleration. If there is no GPU, it also supports CPU version. One of its advantages is the dynamic computing feature, that is, the computing graph is created at run time. At present, pytoch, dynet and chainer are the frameworks that support dynamic computing in the market, while tensorflow, mxnet and theano are the frameworks that support static graph computing.        

Pytoch is essentially a numpy alternative to GPU, providing a high-level API for creating and training neural networks. To get started quickly, you need to be familiar with some basic concepts of numpy, Python and deep learning.

2. Learning approach:

At present, there are many online tutorials about pytoch. How to choose an easy to understand and systematic tutorial is particularly important. In combination with my own learning of pytroch and the screening of learning resources, the editor will provide readers with some professional learning websites, hoping to facilitate everyone's better learning.        

1. Pytorch official website: pytorch official website can be directly Baidu: pytorch. The first is the official documents. The official website is the most authoritative, comprehensive and official interpretation of pytoch. The corresponding descriptions of common interfaces and functions can be found here. You can learn something you can't learn elsewhere by reading more official documents.         

2.github: this is an open source entry-level pytorch tutorial, which is simple and practical (since the official account article cannot quote external links, if you want to learn this, you can directly copy all the paths)

3. Don't bother Python: don't bother Python directly in Baidu, and you can find it. Don't bother the tutorial, which covers the framework videos and code commonly used for in-depth learning. Xiaobian thinks that this tutorial is the most suitable for beginners. The detailed documents, comprehensive video explanations, and the corresponding video code are also equipped, which is worth studying systematically.

3. Pytoch installation:

Before pytorch0.4.0, only MacOS and Linux systems were supported, and multiple installation methods were supported. After pytorch0.4.0, Windows systems were supported. Several different installation methods based on CONDA, PIP and source code compilation are introduced on the official website. Supported versions are python2.7, python3.5, and python3.6. In view of the large amount of computing required for deep learning, it is strongly recommended to find a computer with an independent graphics card to learn. Of course, if there is no graphics card, the computing speed will be greatly reduced. Xiaobian has installed a dual system of ubuntun16.04, and the machine has no graphics card, so the construction of the environment and the subsequent code are based on Ubuntu under CPU. Because you are used to using mkvirtulenv to manage your environment (CONDA can download non Python installation packages. Currently, the packages used in this environment are Python packages, so there is no difference between the two in this environment). Environment setup provides mkvirtulenv and CONDA installation methods.

The source of the following figure belongs to the pytoch official website. The operating system, installation package management tool, python version and CUDA can be selected according to their own computer configuration


課程聯(lián)系1:
大學(xué)資源網(wǎng)客服

課程聯(lián)系2:
大學(xué)資源網(wǎng)客服

課程聯(lián)系3:
大學(xué)資源網(wǎng)客服

服務(wù)時間:
8:00-21:00(工作日)

绥德县| 汝阳县| 桂东县| 莒南县| 峨山| 邢台县| 肇源县| 桑植县| 鄂托克前旗| 姜堰市| 宝山区| 鲁甸县| 曲沃县| 同江市| 望都县| 康保县| 沈丘县| 稷山县| 盐边县| 宜川县| 云阳县| 疏勒县| 神农架林区| 尤溪县| 仪陇县| 天镇县| 大同市| 南乐县| 海林市| 昭通市| 宜都市| 连城县| 北票市| 和政县| 靖远县| 军事| 穆棱市| 甘洛县| 伊宁市| 红河县| 银川市|