三角函數(shù)公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數(shù)列前n項(xiàng)和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)

圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c"*h

正棱錐側(cè)面積 S=1/2c*h" 正棱臺(tái)側(cè)面積 S=1/2(c+c")h"

圓臺(tái)側(cè)面積 S=1/2(c+c")l=pi(R+r)l 球的表面積 S=4pi*r2

圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l

弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

斜棱柱體積 V=S"L 注:其中,S"是直截面面積, L是側(cè)棱長(zhǎng)

柱體體積公式 V=s*h 圓柱體 V=pi*r2h        

郵箱
huangbenjincv@163.com

甘谷县| 茌平县| 旺苍县| 昆山市| 封开县| 个旧市| 金堂县| 胶州市| 巴南区| 庆元县| 奎屯市| 汉川市| 江口县| 庆元县| 乳山市| 沂南县| 五寨县| 淮北市| 新竹市| 庆阳市| 含山县| 张北县| 丰镇市| 卢龙县| 耒阳市| 敦煌市| 常山县| 大邑县| 曲靖市| 资溪县| 志丹县| 贵南县| 汕头市| 塘沽区| 景宁| 乌兰县| 桑日县| 江都市| 晋宁县| 铁岭市| 富平县|