高中數(shù)學必修一在線輔導課程-李老師團隊

  • 名稱:高中數(shù)學必修一在線輔導課程
  • 分類:高一課程  
  • 觀看人數(shù):加載中
  • 時間:2022/7/4 15:52:26

第一章

〖1.1〗集合

【1.1.1】集合的含義與表示

(1)集合的概念

集合中的元素具有確定性、互異性和無序性.

(2)常用數(shù)集及其記法N表示自然數(shù)集,N*或N+表示正整數(shù)集,Z表示整數(shù)集,Q表示有理數(shù)集,R表示實數(shù)集.

(3)集合與元素間的關系

(4)集合的表示法

①自然語言法:用文字敘述的形式來描述集合.

②列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合.

③描述法:{x|x具有的性質(zhì)},其中x為集合的代表元素.

④圖示法:用數(shù)軸或韋恩圖來表示集合.

(5)集合的分類

①含有有限個元素的集合叫做有限集.②含有無限個元素的集合叫做無限集.③不含有任何元素的集合叫做空集.

【1.1.2】集合間的基本關系

(6)子集、真子集、集合相等

【1.1.3】集合的基本運算

(8)交集、并集、補集

【補充知識】含絕對值的不等式與一元二次不等式的解法

(1)含絕對值的不等式的解法

(2)一元二次不等式的解法

〖1.2〗函數(shù)及其表示

【1.2.1】函數(shù)的概念

(1)函數(shù)的概念

①設A、B是兩個非空的數(shù)集,如果按照某種對應法則f,對于集合A中任何一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么這樣的對應(包括集合A,B以及A到B的對應法則f)叫做集合A到B的一個函數(shù),記作f:A→B.

②函數(shù)的三要素:定義域、值域和對應法則.

③只有定義域相同,且對應法則也相同的兩個函數(shù)才是同一函數(shù).

(2)區(qū)間的概念及表示法

(3)求函數(shù)的定義域時,一般遵循以下原則:

①f(x)是整式時,定義域是全體實數(shù).

②f(x)是分式函數(shù)時,定義域是使分母不為零的一切實數(shù).

③f(x)是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合

④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1.

⑥零(負)指數(shù)冪的底數(shù)不能為零.

⑦若f(x)是由有限個基本初等函數(shù)的四則運算而合成的函數(shù)時,則其定義域一般是各基本初等函數(shù)的定義域的交集.

⑧對于求復合函數(shù)定義域問題,一般步驟是:若已知f(x)的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域應由不等式a≤g(x)≤b解出.

⑨對于含字母參數(shù)的函數(shù),求其定義域,根據(jù)問題具體情況需對字母參數(shù)進行分類討論.

⑩由實際問題確定的函數(shù),其定義域除使函數(shù)有意義外,還要符合問題的實際意義.

(4)求函數(shù)的值域或最值

求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同.求函數(shù)值域與最值的常用方法:

①觀察法:對于比較簡單的函數(shù),我們可以通過觀察直接得到值域或最值.

②配方法:將函數(shù)解析式化成含有自變量的平方式與常數(shù)的和,然后根據(jù)變量的取值范圍確定函數(shù)的值域或最值.

④不等式法:利用基本不等式確定函數(shù)的值域或最值.

⑤換元法:通過變量代換達到化繁為簡、化難為易的目的,三角代換可將代數(shù)函數(shù)的最值問題轉(zhuǎn)化為三角函數(shù)的最值問題.

⑥反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關系確定函數(shù)的值域或最值.

⑦數(shù)形結(jié)合法:利用函數(shù)圖象或幾何方法確定函數(shù)的值域或最值.

⑧函數(shù)的單調(diào)性法.

【1.2.2】函數(shù)的表示法

(5)函數(shù)的表示方法

表示函數(shù)的方法,常用的有解析法、列表法、圖象法三種.

解析法:就是用數(shù)學表達式表示兩個變量之間的對應關系.列表法:就是列出表格來表示兩個變量之間的對應關系.圖象法:就是用圖象表示兩個變量之間的對應關系.

(6)映射的概念

〖1.3〗函數(shù)的基本性質(zhì)

【1.3.1】單調(diào)性與最大(小)值

(1)函數(shù)的單調(diào)性

①定義及判定方法

②在公共定義域內(nèi),兩個增函數(shù)的和是增函數(shù),兩個減函數(shù)的和是減函數(shù),增函數(shù)減去一個減函數(shù)為增函數(shù),減函數(shù)減去一個增函數(shù)為減函數(shù).

【1.3.2】奇偶性

(4)函數(shù)的奇偶性

①定義及判定方法

蓬莱市| 芷江| 吴川市| 乾安县| 东阳市| 奇台县| 梁平县| 昌乐县| 和顺县| 扬州市| 乐清市| 宁远县| 鹤山市| 钟山县| 谷城县| 巨野县| 黄山市| 勃利县| 北票市| 平顺县| 江城| 柞水县| 六盘水市| 洛南县| 新兴县| 新安县| 南通市| 桃园县| 峨眉山市| 谷城县| 河北区| 清水县| 荔浦县| 翁牛特旗| 昌黎县| 潼关县| 平顶山市| 滨海县| 遵义县| 全椒县| 吉首市|