課件英文視頻及字幕等 by 愛可可-愛生活

鏈接:https://pan.baidu.com/s/1pKsTivp#list

官網(wǎng)

鏈接:CS231n: Convolutional Neural Networks for Visual Recognition

深度學習與計算機視覺-非常經(jīng)典人工智能課程

深度學習與計算機視覺-非常經(jīng)典人工智能課程-

These notes accompany the Stanford CS class CS231n: Convolutional Neural Networks for Visual Recognition. 

For questions/concerns/bug reports contact Justin Johnson regarding the assignments, or contact Andrej Karpathy regarding the course notes. You can also submit a pull request directly to our git repo. 

We encourage the use of the hypothes.is extension to annote comments and discuss these notes inline.

Spring 2019 Assignments

Assignment #1: Image Classification, kNN, SVM, Softmax, Neural Network

Assignment #2: Fully-Connected Nets, Batch Normalization, Dropout, Convolutional Nets

Assignment #3: Image Captioning with Vanilla RNNs, Image Captioning with LSTMs, Network Visualization, Style Transfer, Generative Adversarial Networks

Module 0: Preparation

Setup Instructions

Python / Numpy Tutorial

IPython Notebook Tutorial

Google Cloud Tutorial

AWS Tutorial

Module 1: Neural Networks

Image Classification: Data-driven Approach, k-Nearest Neighbor, train/val/test splits

L1/L2 distances, hyperparameter search, cross-validation

Linear classification: Support Vector Machine, Softmax

parameteric approach, bias trick, hinge loss, cross-entropy loss, L2 regularization, web demo

Optimization: Stochastic Gradient Descent

optimization landscapes, local search, learning rate, analytic/numerical gradient

Backpropagation, Intuitions

chain rule interpretation, real-valued circuits, patterns in gradient flow

Neural Networks Part 1: Setting up the Architecture

model of a biological neuron, activation functions, neural net architecture, representational power

Neural Networks Part 2: Setting up the Data and the Loss

preprocessing, weight initialization, batch normalization, regularization (L2/dropout), loss functions

Neural Networks Part 3: Learning and Evaluation

gradient checks, sanity checks, babysitting the learning process, momentum (+nesterov), second-order methods, Adagrad/RMSprop, hyperparameter optimization, model ensembles

Putting it together: Minimal Neural Network Case Study

minimal 2D toy data example

Module 2: Convolutional Neural Networks

Convolutional Neural Networks: Architectures, Convolution / Pooling Layers

layers, spatial arrangement, layer patterns, layer sizing patterns, AlexNet/ZFNet/VGGNet case studies, computational considerations

Understanding and Visualizing Convolutional Neural Networks

tSNE embeddings, deconvnets, data gradients, fooling ConvNets, human comparisons

Transfer Learning and Fine-tuning Convolutional Neural Networks

中文字幕

郵箱
huangbenjincv@163.com

东安县| 娱乐| 吉林省| 滨州市| 新兴县| 洛宁县| 汶川县| 应城市| 阳朔县| 荣成市| 贵州省| 东方市| 唐河县| 镇平县| 怀安县| 门源| 宝清县| 兴安县| 正阳县| 鄂托克前旗| 潞城市| 呼图壁县| 灵武市| 中方县| 广平县| 大竹县| 湖北省| 景泰县| 海南省| 徐州市| 嵩明县| 嘉兴市| 定日县| 湖州市| 桂阳县| 太谷县| 日照市| 玉林市| 武山县| 乌拉特后旗| 青龙|