推薦一門由深度學(xué)習(xí)泰斗,Yann LeCun主講的深度學(xué)習(xí)基礎(chǔ)課程,紐約大學(xué)2020深度學(xué)習(xí)新課《深度學(xué)習(xí)(pytorch)》。


本課程涉及深度學(xué)習(xí)和表示學(xué)習(xí)的最新技術(shù),重點(diǎn)是有監(jiān)督和無監(jiān)督的深度學(xué)習(xí)、嵌入方法、度量學(xué)習(xí)、卷積網(wǎng)和遞歸網(wǎng),并應(yīng)用于計(jì)算機(jī)視覺、自然語言理解和語音識(shí)別。期望學(xué)生最好有一定的數(shù)據(jù)科學(xué)和機(jī)器學(xué)習(xí)基礎(chǔ)知識(shí)。

Contribution instructions

1. Week11.1. Motivation of Deep Learning, and Its History and Inspiration

1.2. Evolution and Uses of CNNs and Why Deep Learning?

1.3. Problem Motivation, Linear Algebra, and Visualization

2. Week22.1. Introduction to Gradient Descent and Backpropagation Algorithm

2.2. Computing gradients for NN modules and Practical tricks for Back Propagation

2.3. Artificial neural networks(ANNs)

3. Week33.1. Visualization of neural networks parameter transformation and fundamental concepts of convolution

3.2. ConvNet Evolutions, Architectures, Implementation Details and Advantages.

3.3. Properties of natural signals

4. Week 44.1. Linear Algebra and Convolutions

5. Week55.1. Optimization TechniquesI

5.2. Optimization Techniques ll

5.3. Understanding convolutions and automatic differentiation engine

6. Week66.1. Applications of Convolutional Network

6.2. RNNs, GRUs, LSTMs, Attention, Seq2Seq, and Memory Networks

6.3. Architecture of RNN and LSTM Model

7. week77.1. Energy-Based Models

7.2. SSL, EBM with details and examples

7.3. Introduction to Autoencoders


郵箱
huangbenjincv@163.com

灌阳县| 琼结县| 应用必备| 当阳市| 清丰县| 宁南县| 巴南区| 虞城县| 闽清县| 临澧县| 通道| 绥宁县| 丹棱县| 闵行区| 新干县| 仪陇县| 株洲县| 堆龙德庆县| 嘉禾县| 社旗县| 南汇区| 璧山县| 桃源县| 高邮市| 万年县| 平邑县| 镇江市| 延川县| 抚远县| 达日县| 泸定县| 亚东县| 来安县| 石楼县| 嘉荫县| 武威市| 延吉市| 图木舒克市| 芦溪县| 塘沽区| 来安县|