李宏毅(李弘毅)分別于2010年和2012年獲得國立臺灣大學(xué)碩士和博士學(xué)位。2012年9月至2013年8月,Academia Sinica信息技術(shù)創(chuàng)新研究中心博士后。2013年9月至2014年7月,麻省理工學(xué)院計算機科學(xué)和人工智能實驗室( CSAIL )語言系統(tǒng)組的訪問科學(xué)家。現(xiàn)為國立臺灣大學(xué)電氣工程系助理教授,并獲大學(xué)計算機科學(xué)與信息工程系聯(lián)合委任。他的研究側(cè)重于機器學(xué)習(xí)(尤其是深度學(xué)習(xí))、語言理解和語音識別。
Machine Learning
2020
李宏毅
Hung-yi Lee
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
本學(xué)期總共有十五個作業(yè) (每項作業(yè)滿分皆為10 分,
學(xué)期成績以分數(shù)最高的前十個作業(yè)計算)
f ( ) = f ( ) = f ( ) = f ( ) =
機器學(xué)習(xí)就是自動找函式
• Speech Recognition
• Image Recognition
• Playing Go
• Dialogue System
“Cat”
“How are you”
“5-5”
“How are you?” “I am fine.”
(what the user said) (system response)
(next move)
你想找什麼樣的函式?
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
f
PM2.5 today
PM2.5 yesterday
…….
PM2.5 tomorrow
(scalar)
The output of the
function is a scalar.
Regression
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
Input f Yes or No
(sentence) (pos or neg)
Binary
Classification
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
f
Input Class 1, Class 2, … Class N
Multi-class
Classification
麵包 蛋 湯
Generation (生成)
產(chǎn)生有結(jié)構(gòu)的複雜東西
(例如:文句、圖片)
擬人化的講法—創(chuàng)造
Regression,
Classification
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
Generation
翻譯:產(chǎn)生文句
產(chǎn)生二次元
人物
怎麼告訴機器
你想找什麼樣的函式?
Supervised Learning
𝒇 “Cat”
𝑥 𝑦 𝑦1:“Cat” 𝑦2:“Cat”
𝑦3:“Dog” 𝑦4:“Dog”
𝑥1: 𝑥2: 𝑥3: 𝑥4:
Labelled Data
函式的 Loss
𝒇𝟏
“Dog”/“Dog”/
“Dog”/“Dog”
𝑥1 / 𝑥2 / 𝑥3 / 𝑥4
Loss = 50%
𝑦1:“Cat” 𝑦2:“Cat”
𝑦3:“Dog” 𝑦4:“Dog”
𝑥1: 𝑥2: 𝑥3: 𝑥4:
Labelled Data
函式的 Loss
𝒇𝟐
“Cat”/“Cat”/
“Dog”/“Dog”
𝑥1 / 𝑥2 / 𝑥3 / 𝑥4
Loss = 0%
接下來機器會自動找出
Loss 最低的函式
𝑦1:“Cat” 𝑦2:“Cat”
𝑦3:“Dog” 𝑦4:“Dog”
𝑥1: 𝑥2: 𝑥3: 𝑥4:
Labeled Data
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
Supervised Learning
Reinforcement Learning
Supervised v.s. Reinforcement
• Supervised:
• Reinforcement Learning
Next move:
“5-5”
Next move:
“3-3”
First move …… many moves …… Win!
Alpha Go is supervised learning + reinforcement learning.
(Reward)
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
Reinforcement Learning
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
Unsupervised
Learning
What can machine learn
from unlabeled images?
機器怎麼
找出你想要的函式?
Use RNN
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
限制函式尋找範圍
Linear
Network Architecture
Use CNN
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
函式尋找方法 – Gradient Descent
Implement the
algorithm by yourself
Deep Learning Framework
(3/26 PyTorch 教學(xué)、會錄影)
前沿研究
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
This is a “cat”
Because …
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
Add
noise
This is a “cat”
Star Fish …
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
This is a “cat”
CNN required
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
This is a “cat”
我不知道
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
99.5% 57.5%
Training
Data
Testing
Data
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
Meta Learning = Learn to learn
• Now we design the learning algorithm
• Can machine learn the learning algorithm?
program
for learning
I can learn!
program designing
program
for learning
program
for learning
I can learn!
能不能讓機器聰明一點?
天資不佳卻勤奮不懈?
http://web.stanford.edu/class/psych209/Readings/LakeEtAlBBS.pdf
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
終身學(xué)習(xí) (Life-long Learning)
Learning
Task 1
Learning
Task 2
Learning
Task 3
…
I can solve
task 1.
I can solve
tasks 1&2.
I can solve
tasks 1&2&3.
Life-Long Learning (終身學(xué)習(xí)), Continuous Learning,
Never Ending Learning, Incremental Learning
CNN required
Regression
Classification
RNN Seq2seq
Meta Learning
Unsupervised
Learning
(Auto-encoder)
Life-long
Learning
Reinforcement
Learning
CNN
Explainable AI
Adversarial
Attack
Network
Compression
Anomaly
Detection
GAN
Transfer Learning
(Domain Adversarial
Learning)
Easy Normal Challenging
(數(shù)分鐘完成) (數(shù)小時完成) (數(shù)日完成)
Kaggle
(僅供參考)
Learning order
課程網(wǎng)頁
• http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
完全可以在家自學(xué)!
課程網(wǎng)頁
在寫作業(yè)前先線上學(xué)習(xí)
課程網(wǎng)頁 所有作業(yè)都有 Colab 範例,
照著做就完成一半!
課程網(wǎng)頁 作業(yè)的要求都在這裡
(錄影預(yù)計 3/12 全數(shù)完成)
所有作業(yè)皆已經(jīng)公告,現(xiàn)在就可以開始做了
課程網(wǎng)頁 上課補充的是相關(guān)主題最新的知識,
和作業(yè)沒有直接關(guān)連 (會錄影)
10:20 開始 ,3/26 後每星期都有 (國定假日除外)
課程網(wǎng)頁
每一個作業(yè)都有死線
以後每週四上午 9:10 – 10:00 就是助教時間
FB 社團
• 社團: “Machine Learning (2020,Spring)”
• https://www.facebook.com/groups/1099602297060276/
歡迎同學(xué)們提問 ☺
感謝助教群! ! !
助教信箱:
ntu-ml-2020spring-ta@googlegroups.com