課程目錄

第一章    統(tǒng)計(jì)

1.1.1簡(jiǎn)單隨機(jī)抽樣

1.總體和樣本

在統(tǒng)計(jì)學(xué)中 , 把研究對(duì)象的全體叫做總體.

把每個(gè)研究對(duì)象叫做個(gè)體.

把總體中個(gè)體的總數(shù)叫做總體容量.

為了研究總體 x 的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x₁,x₂……,xn 研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.

2.簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨 機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

3.簡(jiǎn)單隨機(jī)抽樣常用的方法:

  (1)抽簽法;⑵隨機(jī)數(shù)表法;⑶計(jì)算機(jī)模擬法;⑷使用統(tǒng)計(jì)軟件直接抽取。在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。

4.抽簽法:

  (1)給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào)

  (2)準(zhǔn)備抽簽的工具,實(shí)施抽簽

  (3)對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查

       例:請(qǐng)調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動(dòng)情況。

5.隨機(jī)數(shù)表法:

   例:利用隨機(jī)數(shù)表在所在的班級(jí)中抽取10位同學(xué)參加某項(xiàng)活動(dòng)。

1.1.2系統(tǒng)抽樣

1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):

把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡(jiǎn)單隨機(jī)抽樣的辦法抽取。

K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)

前提條件:總體中個(gè)體的排列對(duì)于研究的變量來(lái)說(shuō),應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布。可以在調(diào)查允許的條件下,從不同的樣本開(kāi)始抽樣,對(duì)比幾次樣本的特點(diǎn)。如果有明顯差別,說(shuō)明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。

2.系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘?duì)抽樣框的要求較低,實(shí)施也比較簡(jiǎn)單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。

1.1.3分層抽樣

1.分層抽樣(類型抽樣):

先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟危缓笤僭诟鱾(gè)類型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構(gòu)成總體的樣本。

兩種方法:

1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

分層標(biāo)準(zhǔn):

(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

(3)以那些有明顯分層區(qū)分的變量作為分層變量。

3.分層的比例問(wèn)題:

  (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來(lái)抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對(duì)不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對(duì)各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。

1.2.2用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征

1、本均值:

2、.樣本標(biāo)準(zhǔn)差:  

3.用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的

雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個(gè)估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。

4.(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的常數(shù),標(biāo)準(zhǔn)差不變

(2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉?lái)的k倍

(3)一組數(shù)據(jù)中的最大值和最小值對(duì)標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;

“去掉一個(gè)最高分,去掉一個(gè)最低分”中的科學(xué)道理

1.3.2兩個(gè)變量的線性相關(guān)

1、概念:

     (1)回歸直線方程(2)回歸系數(shù)

2.最小二乘法

3.直線回歸方程的應(yīng)用

      (1)描述兩變量之間的依存關(guān)系;利用直線回歸方程即可定量描述兩個(gè)變量間依存的數(shù)量關(guān)系

      (2)利用回歸方程進(jìn)行預(yù)測(cè);把預(yù)報(bào)因子(即自變量x)代入回歸方程對(duì)預(yù)報(bào)量(即因變量Y)進(jìn)行估計(jì),即可得到個(gè)體Y值的容許區(qū)間。

      (3)利用回歸方程進(jìn)行統(tǒng)計(jì)控制規(guī)定Y值的變化,通過(guò)控制x的范圍來(lái)實(shí)現(xiàn)統(tǒng)計(jì)控制的目標(biāo)。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過(guò)控制汽車流量來(lái)控制空氣中NO2的濃度。

4.應(yīng)用直線回歸的注意事項(xiàng)

  (1)做回歸分析要有實(shí)際意義;

  (2)回歸分析前,最好先作出散點(diǎn)圖;

  (3)回歸直線不要外延。

第二章      概率

2.1.1—2.1.2隨機(jī)事件的概率及概率的意義

1、基本概念:

(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;

(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;

(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;    (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;

(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。

(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率

2.1.3概率的基本性質(zhì)

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;

(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對(duì)立事件;

(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)= P(A)+ P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性質(zhì):

1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;

2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)= P(A)+ P(B);

3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A    與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形:(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。

2.2.1—2.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生

1、(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。

(2)古典概型的解題步驟;

 ①求出總的基本事件數(shù);

 ②求出事件A所包含的基本事件數(shù),然后利用公式                                                                        

2.3.1—2.3.2幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生

1、基本概念:

(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;

(2)幾何概型的概率公式:       

2、幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.

課程聯(lián)系1:
大學(xué)資源網(wǎng)客服

課程聯(lián)系2:
大學(xué)資源網(wǎng)客服

課程聯(lián)系3:
大學(xué)資源網(wǎng)客服

服務(wù)時(shí)間:
8:00-21:00(工作日)

宣威市| 阿合奇县| 满城县| 肇源县| 朝阳县| 漳浦县| 宜章县| 长阳| 韶山市| 礼泉县| 黔南| 马鞍山市| 唐河县| 禄丰县| 库车县| 曲周县| 桦甸市| 淮北市| 宜春市| 平和县| 太湖县| 无极县| 庆云县| 莆田市| 阜宁县| 武汉市| 雷州市| 双牌县| 阜新市| 昌吉市| 河南省| 南充市| 张家口市| 融水| 汝城县| 仪征市| 绥德县| 湘潭县| 黎城县| 甘谷县| 松溪县|