一、相交線 兩條直線相交,形成4個角。
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質(zhì)是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質(zhì)是對頂角相等。
①鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線。具有這種關系的兩個角,互為鄰補角。如:∠1、∠2。
②對頂角:兩個角有一個公共頂點,并且一個角的兩條邊,分別是另一個角的兩條邊的反向延長線,具有這種關系的兩個角,互為對頂角。如:∠1、∠3。
③對頂角相等。
二、垂線
1.垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直。
2.垂線: 垂直是相交的一種特殊情形,兩條直線垂直,其中一條直線叫做另一條直線的垂線。
3.垂足:兩條垂線的交點叫垂足。
4.垂線特點:過一點有且只有一條直線與已知直線垂直。
5.點到直線的距離: 直線外一點到這條直線的垂線段的長度,叫點到直線的距離。連接直線外一點與直線上各點的所有線段中,垂線段最短。
三、同位角、內(nèi)錯角、同旁內(nèi)角
兩條直線被第三條直線所截形成8個角。
1.同位角:(在兩條直線的同一旁,第三條直線的同一側(cè))在兩條直線的上方,又在直線EF的同側(cè),具有這種位置關系的兩個角叫同位角。如:∠1和∠5。
2.內(nèi)錯角:(在兩條直線內(nèi)部,位于第三條直線兩側(cè))在兩條直線之間,又在直線EF的兩側(cè),具有這種位置關系的兩個角叫內(nèi)錯角。如:∠3和∠5。
3.同旁內(nèi)角:(在兩條直線內(nèi)部,位于第三條直線同側(cè))在兩條直線之間,又在直線EF的同側(cè),具有這種位置關系的兩個角叫同旁內(nèi)角。如:∠3和∠6。
四、平行線及其判定
平行線
1.平行:兩條直線不相交。互相平行的兩條直線,互為平行線。a∥b(在同一平面內(nèi),不相交的兩條直線叫做平行線。)
2.平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
3.平行公理推論:平行于同一直線的兩條直線互相平行。如果b//a,c//a,那么b//c
平行線的判定:
1. 兩條平行線被第三條直線所截,如果同位角相等,那么這兩條直線平行。(同位角相等,兩直線平行)
2. 兩條平行線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。(內(nèi)錯角相等,兩直線平行)
3. 兩條平行線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行。(同旁內(nèi)角互補,兩直線平行)
推論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
平行線的性質(zhì)
(一)平行線的性質(zhì)
1.兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
2.兩條平行線被第三條直線所截,內(nèi)錯角相等。(兩直線平行,內(nèi)錯角相等)
3.兩條平行線被第三條直線所截,同旁內(nèi)角互補。(兩直線平行,同旁內(nèi)角相等)
(二)命題、定理、證明
1.命題的概念:判斷一件事情的語句,叫做命題。
2.命題的組成:每個命題都是題設、結(jié)論兩部分組成。
題設是已知事項;結(jié)論是由已知事項推出的事項。命題常寫成“如果„„,那么„„”的形式。具有這種形式的命題中,用“如果”開始的部分是題設,用“那么”開始的部分是結(jié)論。
3.真命題:正確的命題,題設成立,結(jié)論一定成立。
4.假命題:錯誤的命題,題設成立,不能保證結(jié)論一定成立。
5.定理:經(jīng)過推理證實得到的真命題。(定理可以做為繼續(xù)推理的依據(jù))
6.證明:推理的過程叫做證明。
平移
1.平移:平移是指在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移變換 (簡稱平移),平移不改變物體的形狀和大小。
2.平移的性質(zhì)
①把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
②新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點。連接各組對應點的線段平行且相等。
實數(shù)
一、平方根
1、平方根
(1)平方根的定義:如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.
(2)開平方的定義:求一個數(shù)的平方根的運算,叫做開平方.開平方運算的被開方數(shù)必須是非負數(shù)才有意義。
(3)平方與開平方互為逆運算:±3的平方等于9,9的平方根是±3
(4)一個正數(shù)有兩個平方根,即正數(shù)進行開平方運算有兩個結(jié)果;一個負數(shù)沒有平方根,即負數(shù)不能進行開平方運算;0的平方根是0.
(5)符號:正數(shù)a的正的平方根可用
表示,也是a的算術平方根;正數(shù)a的負的平方根可用-表示.
(6) <—>
a是x的平方 x的平方是a
x是a的平方根 a的平方根是x
2、算術平方根
(1)算術平方根的定義: 一般地,如果一個正數(shù)x的平方等于a,即,那么這個正數(shù)x叫做a的算術平方根.a(chǎn)的算術平方根記為,讀作“根號a”,a叫做被開方數(shù).
規(guī)定:0的算術平方根是0.
也就是,在等式 (x≥0)中,規(guī)定 x=。
(2)的結(jié)果有兩種情況:當a是完全平方數(shù)時,是一個有限數(shù);當a不是一個完全平方數(shù)時,是一個無限不循環(huán)小數(shù)。
(3)當被開方數(shù)擴大時,它的算術平方根也擴大;
當被開方數(shù)縮小時與它的算術平方根也縮小。
(4)夾值法及估計一個(無理)數(shù)的大小
(5) (x≥0) <—>
a是x的平方 x的平方是a
x是a的算術平方根 a的算術平方根是x
(6)正數(shù)和零的算術平方根都只有一個,零的算術平方根是零。
(7)平方根和算術平方根兩者既有區(qū)別又有聯(lián)系:
區(qū)別在于正數(shù)的平方根有兩個,而它的算術平方根只有一個;
聯(lián)系在于正數(shù)的正平方根就是它的算術平方根,而正數(shù)的負平方根是它的算術平方根的相反數(shù)。
二、立方根
1、立方根的定義:如果一個數(shù)x的立方等于a,這個數(shù)叫做a的立方根(也叫做三次方根),即如果,那么x叫做a的立方根。求一個數(shù)的立方根的運算,叫做開立方。
2、一個數(shù)a的立方根,記作,讀作:“三次根號a”,其中a叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。
3、一個正數(shù)有一個正的立方根;
0有一個立方根,是它本身;一個負數(shù)有一個負的立方根; 任何數(shù)都有唯一的立方根。
4、利用開立方和立方互為逆運算關系,求一個數(shù)的立方根,就可以利用這種互逆關系,檢驗其正確性,求負數(shù)的立方根,可以先求出這個負數(shù)的絕對值的立方根,再取其相反數(shù),即。
5、 <—>
a是x的立方 x的立方是a
x是a的立方根 a的立方根是x
6、,這說明三次根號內(nèi)的負號可以移到根號外面。
三、實數(shù)
一、實數(shù)的概念及分類
無理數(shù):像前面的很多數(shù)的平方根和立方根都是無限不循環(huán)小數(shù),無限不循環(huán)小數(shù)又叫無理數(shù)。
實數(shù):有理數(shù)和無理數(shù)統(tǒng)稱實數(shù)。
1、實數(shù)的分類
2、無理數(shù)
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:
(1)開方開不盡的數(shù),如
(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;
二、實數(shù)的倒數(shù)、相反數(shù)和絕對值
1、相反數(shù)
實數(shù)與它的相反數(shù)是一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
數(shù)a的相反數(shù)是—a,這里a表示任意一個實數(shù)。
2、絕對值
一個數(shù)的絕對值就是表示這個數(shù)的點與原點的距離,|a|≥0。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。
一個正實數(shù)的絕對值是它本身,一個負實數(shù)的絕對值是它的相反數(shù),零的絕對值是0。
正數(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù),兩個負數(shù),絕對值大的反而小。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
4. 實數(shù)與數(shù)軸上點的關系:
每一個無理數(shù)都可以用數(shù)軸上的一個點表示出來,
數(shù)軸上的點有些表示有理數(shù),有些表示無理數(shù),
實數(shù)與數(shù)軸上的點就是一一對應的,即每一個實數(shù)都可以用數(shù)軸上的一個點來表示;反過來,數(shù)軸上的每一個點都是表示一個實數(shù)。
三、科學記數(shù)法和近似數(shù)
1、有效數(shù)字
一個近似數(shù)四舍五入到哪一位,就說它精確到哪一位,這時,從左邊第一個不是零的數(shù)字起到右邊精確的數(shù)位止的所有數(shù)字,都叫做這個數(shù)的有效數(shù)字。
2、科學記數(shù)法
把一個數(shù)寫做±a×10n的形式,其中1≤a<10,n是整數(shù),這種記數(shù)法叫做科學記數(shù)法。
四、實數(shù)大小的比較
1、數(shù)軸
規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意三要素缺一不可)。
解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應的,并能靈活運用。
2、實數(shù)大小比較的幾種常用方法
(1)數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。
(2)求差比較:設a、b是實數(shù),
(3)求商比較法:設a、b是兩正實數(shù),
(4)絕對值比較法:設a、b是兩負實數(shù),。
(5)平方法:設a、b是兩負實數(shù),則。
五、實數(shù)的運算
6、實數(shù)混合運算時,對于運算順序有什么規(guī)定?
實數(shù)混合運算時,將運算分為三級,加減為一級運算,乘除為二能為運算,乘方為三級運算。同級運算時,從左到右依次進行;不是同級的混合運算,先算乘方,再算乘除,而后才算加減;運算中如有括號時,先做括號內(nèi)的運算,按小括號、中括號、大括號的順序進行。
7、有理數(shù)除法運算法則就什么?
兩有理數(shù)除法運算法則可用兩種方式來表述:第一,除以一個不等于零的數(shù),等于乘以這個數(shù)的倒數(shù);第二,兩數(shù)相除,同號得正,異號得負,并把絕對值相除。零除以任何一個不為零的數(shù),商都是零。
8、什么叫有理數(shù)的乘方?冪?底數(shù)?指數(shù)?
相同因數(shù)相乘積的運算叫乘方,乘方的結(jié)果叫冪,相同因數(shù)的個數(shù)叫指數(shù),這個因數(shù)叫底數(shù)。記作: an
9、有理數(shù)乘方運算的法則是什么?
負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù)。零的任何正整數(shù)冪都是零。
10、加括號和去括號時各項的符號的變化規(guī)律是什么?
去(加)括號時如果括號外的因數(shù)是正數(shù),去(加)括號后式子各項的符號與原括號內(nèi)的式子相應各項的符號相同;括號外的因數(shù)是負數(shù)去(加)括號后式子各項的符號與原括號內(nèi)式子相應各項的符號相反。
平面直角坐標系
一、平面直角坐標系
有序數(shù)對
1.有序數(shù)對:用兩個數(shù)來表示一個確定的位置,其中兩個數(shù)各自表示不同的意義,我們把這種有順序的兩個數(shù)組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
2.坐標:數(shù)軸(或平面)上的點可以用一個數(shù)(或數(shù)對)來表示,這個數(shù)(或數(shù)對)叫做這個點的坐標。
平面直角坐標系
1.平面直角坐標系:在平面內(nèi)畫兩條互相垂直,并且有公共原點的數(shù)軸。這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系。
2.X軸:水平的數(shù)軸叫X軸或橫軸。向右方向為正方向。
3.Y軸:豎直的數(shù)軸叫Y軸或縱軸。向上方向為正方向。
4.原點:兩個數(shù)軸的交點叫做平面直角坐標系的原點。
對應關系:平面直角坐標系內(nèi)的點與有序?qū)崝?shù)對一一對應。
坐標:對于平面內(nèi)任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數(shù)a,b分別叫點P的橫坐標和縱坐標。
象限
1.象限:X軸和Y軸把坐標平面分成四個部分,也叫四個象限。右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數(shù)軸為界,橫軸、縱軸上的點及原點不屬于任何象限。一般,在x軸和y軸取相同的單位長度。
2.象限的特點:
1、特殊位置的點的坐標的特點:
(1)x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2)第一、三象限角平分線上的點橫、縱坐標相等;
第二、四象限角平分線上的點橫、縱坐標互為相反數(shù)。
(3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行于縱軸;如果兩點的縱坐標相同,則兩點的連線平行于橫軸。
2、點到軸及原點的距離:
點到x軸的距離為|y|;
點到y(tǒng)軸的距離為|x|;
點到原點的距離為x的平方加y的平方再開根號;
3、三大規(guī)律
(1)平移規(guī)律:
點的平移規(guī)律
左右平移→縱坐標不變,橫坐標左減右加;
上下平移→橫坐標不變,縱坐標上加下減。
圖形的平移規(guī)律 找特殊點
(2)對稱規(guī)律
關于x軸對稱→橫坐標不變,縱坐標互為相反數(shù);
關于y軸對稱→橫坐標互為相反數(shù),縱坐標不變;
關于原點對稱→橫縱坐標都互為相反數(shù)。
(3)位置規(guī)律
各象限點的坐標符號:(注意:坐標軸上的點不屬于任何一個象限)
二、坐標方法的簡單應用
用坐標表示地理位置的過程:
1.建立坐標系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據(jù)具體問題確定適當?shù)谋壤撸谧鴺溯S上標出單位長度。
3.在坐標平面內(nèi)畫出這些點,寫出各點的坐標和各個地點的名稱。
用坐標表示平移
在平面直角坐標系內(nèi),如果把一個圖形各個點的橫坐標都加(或減去)一個正數(shù)a,相應的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去) 一個正數(shù)a,相應的新圖形就把原圖形向上(下)平移a個單位長度。
用坐標表示地理位置的過程:
1.建立坐標系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據(jù)具體問題確定適當?shù)谋壤撸谧鴺溯S上標出單位長度。
3.在坐標平面內(nèi)畫出這些點,寫出各點的坐標和各個地點的名稱。
用坐標表示平移
在平面直角坐標系內(nèi),如果把一個圖形各個點的橫坐標都加(或減去)一個正數(shù)a,相應的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去) 一個正數(shù)a,相應的新圖形就把原圖形向上(下)平移a個單位長度。
二元一次方程組
一、二元一次方程組
1.二元一次方程:含有兩個未知數(shù)的方程并且所含未知項的最高次數(shù)是1,這樣的整式方程叫做二元一次方程。
2.方程組:有幾個方程組成的一組方程叫做方程組。如果方程組中含有兩個未知數(shù),且含未知數(shù)的項的次數(shù)都是一次,那么這樣的方程組叫做二元一次方程組。
二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解。
二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。
二、消元——解二元一次方程組
二元一次方程組有兩種解法:一種是代入消元法,一種是加減消元法.
1.代入消元法:把二元一次方程中的一個方程的一個未知數(shù)用含另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解。
2.加減消元法:兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,把這兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程。
三、實際問題與二元一次方程組
實際應用:審題→設未知數(shù)→列方程組→解方程組→檢驗→作答。
關鍵:找等量關系
常見的類型有:分配問題、追及問題、順流逆流、藥物配制、行程問題
順流逆流公式:
四、三元一次方程組的解法(選學)
三元一次方程組:方程組含有三個未知數(shù),每個方程中含有未知數(shù)的項的次數(shù)都是1,并且一共有三個方程組,像這樣的方程組叫做三元一次方程組。
解三元一次方程組的基本思路:通過“代入”或“加減”進行消元。把“三元”化為“二元”,使解三元一次方程組轉(zhuǎn)化為解二元一次方程組,進而再轉(zhuǎn)化為解一元一次方程。
不等式與不等式組
一、不等式
不等式及其解集
1.不等式:用不等號(包括:>、、、<、≠)表示大小關系的式子。
2.不等式的解:使不等式成立的未知數(shù)的值,叫不等式的解。
3.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
不等式的性質(zhì):
性質(zhì)1:如果a>b,b>c,那么a>c(不等式的傳遞性).
性質(zhì)2:不等式的兩邊同加(減)同一個數(shù)(或式子),不等號的方向不變。如果a>b,那么a+c>b+c(不等式的可加性).
性質(zhì)3: 不等式的兩邊同乘(除以)同一個正數(shù),不等號的方向不變。不等式的兩邊同乘(除以)同一個負數(shù),不等號的方向改變。
如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac
性質(zhì)4:如果a>b,c>d,那么a+c>b+d. (不等式的加法法則)
性質(zhì)5:如果a>b>0,c>d>0,那么ac>bd. (可乘性)
性質(zhì)6:如果a>b>0,n∈N,n>1,那么an>bn,且.當0
二、一元一次不等式
1.一元一次不等式:含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式。
2、不等式的解法:
步驟:去分母,去括號,移項,合并同類項,系數(shù)化為一;
注意:去分母與系數(shù)化為一要特別小心,因為要在不等式兩端同時乘或除以某一個數(shù),要考慮不等號的方向是否發(fā)生改變的問題。
三、一元一次不等式組
1.一元一次不等式組:一般地,關于同一未知數(shù)的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2.不等式組的解:幾個不等式的解集的公共部分,叫做由它們組成的不等式組的解集。解不等式組就是求它的解集。
3.解不等式組:先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式的解集。
解一元一次不等式組的一般方法:
以兩條不等式組成的不等式組為例,
①若兩個未知數(shù)的解集在數(shù)軸上表示同向左,就取在左邊的未知數(shù)的解集為不等式組的解集,此乃“同小取小”
②若兩個未知數(shù)的解集在數(shù)軸上表示同向右,就取在右邊的未知數(shù)的解集為不等式組的解集,此乃“同大取大”
③若兩個未知數(shù)的解集在數(shù)軸上相交,就取它們之間的值為不等式組的解集。若x表示不等式的解集,此時一般表示為a<x<b,或a≤x≤b。此乃“相交取中
④若兩個未知數(shù)的解集在數(shù)軸上向背,那么不等式組的解集就是空集,不等式組無解。此乃“向背取空”不等式組的解集的確定方法(a>b):


