初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)如下。
1、代數(shù)部分:有理數(shù)、無(wú)理數(shù)、實(shí)數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))
2、幾何部分:線(xiàn)段、角相交線(xiàn)、平行線(xiàn)三角形、四邊形、相似形、圓。
(來(lái)源:文章屋網(wǎng) )
考點(diǎn)一、平移 (3~5分)
1、定義
把一個(gè)圖形整體沿某一方向移動(dòng),會(huì)得到一個(gè)新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動(dòng)叫做平移變換,簡(jiǎn)稱(chēng)平移。
2、性質(zhì)
(1)平移不改變圖形的大小和形狀,但圖形上的每個(gè)點(diǎn)都沿同一方向進(jìn)行了移動(dòng)
(2)連接各組對(duì)應(yīng)點(diǎn)的線(xiàn)段平行(或在同一直線(xiàn)上)且相等。
考點(diǎn)二、軸對(duì)稱(chēng) (3~5分)
1、定義
把一個(gè)圖形沿著某條直線(xiàn)折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線(xiàn)成軸對(duì)稱(chēng),該直線(xiàn)叫做對(duì)稱(chēng)軸。
2、性質(zhì)
(1)關(guān)于某條直線(xiàn)對(duì)稱(chēng)的兩個(gè)圖形是全等形。
(2)如果兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線(xiàn)的垂直平分線(xiàn)。
(3)兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),如果它們的對(duì)應(yīng)線(xiàn)段或延長(zhǎng)線(xiàn)相交,那么交點(diǎn)在對(duì)稱(chēng)軸上。
3、判定
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng)。
4、軸對(duì)稱(chēng)圖形
把一個(gè)圖形沿著某條直線(xiàn)折疊,如果直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱(chēng)圖形,這條直線(xiàn)就是它的對(duì)稱(chēng)軸。
考點(diǎn)三、旋轉(zhuǎn) (3~8分)
1、定義
把一個(gè)圖形繞某一點(diǎn)o轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),其中o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
(1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
(2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線(xiàn)段的夾角等于旋轉(zhuǎn)角。
考點(diǎn)四、中心對(duì)稱(chēng) (3分)
1、定義
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱(chēng)圖形,這個(gè)點(diǎn)就是它的對(duì)稱(chēng)中心。
2、性質(zhì)
(1)關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等形。
(2)關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分。
(3)關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)應(yīng)線(xiàn)段平行(或在同一直線(xiàn)上)且相等。
3、判定
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng)。
4、中心對(duì)稱(chēng)圖形
把一個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱(chēng)圖形,這個(gè)店就是它的對(duì)稱(chēng)中心。
考點(diǎn)五、坐標(biāo)系中對(duì)稱(chēng)點(diǎn)的特征 (3分)
1、關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的特征
兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng)時(shí),它們的坐標(biāo)的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為p’(-x,-y)
2、關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的特征
兩個(gè)點(diǎn)關(guān)于x軸對(duì)稱(chēng)時(shí),它們的坐標(biāo)中,x相等,y的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為p’(x,-y)
3、關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的特征
兩個(gè)點(diǎn)關(guān)于y軸對(duì)稱(chēng)時(shí),它們的坐標(biāo)中,y相等,x的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為p’(-x,y)
第二章 圖形的相似
考點(diǎn)一、比例線(xiàn)段 (3分)
1、比例線(xiàn)段的相關(guān)概念
如果選用同一長(zhǎng)度單位量得兩條線(xiàn)段a,b的長(zhǎng)度分別為m,n,那么就說(shuō)這兩條線(xiàn)段的比是,或?qū)懗蒩:b=m:n
在兩條線(xiàn)段的比a:b中,a叫做比的前項(xiàng),b叫做比的后項(xiàng)。
在四條線(xiàn)段中,如果其中兩條線(xiàn)段的比等于另外兩條線(xiàn)段的比,那么這四條線(xiàn)段叫做成比例線(xiàn)段,簡(jiǎn)稱(chēng)比例線(xiàn)段
若四條a,b,c,d滿(mǎn)足或a:b=c:d,那么a,b,c,d叫做組成比例的項(xiàng),線(xiàn)段a,d叫做比例外項(xiàng),線(xiàn)段b,c叫做比例內(nèi)項(xiàng),線(xiàn)段的d叫做a,b,c的第四比例項(xiàng)。
如果作為比例內(nèi)項(xiàng)的是兩條相同的線(xiàn)段,即或a:b=b:c,那么線(xiàn)段b叫做線(xiàn)段a,c的比例中項(xiàng)。
2、比例的性質(zhì)
(1)基本性質(zhì)
①a:b=c:dad=bc
②a:b=b:c
(2)更比性質(zhì)(交換比例的內(nèi)項(xiàng)或外項(xiàng))
(交換內(nèi)項(xiàng))
(交換外項(xiàng))
(同時(shí)交換內(nèi)項(xiàng)和外項(xiàng))
(3)反比性質(zhì)(交換比的前項(xiàng)、后項(xiàng)):
(4)合比性質(zhì):
(5)等比性質(zhì):
3、黃金分割
把線(xiàn)段ab分成兩條線(xiàn)段ac,bc(ac>bc),并且使ac是ab和bc的比例中項(xiàng),叫做把線(xiàn)段ab黃金分割,點(diǎn)c叫做線(xiàn)段ab的黃金分割點(diǎn),其中ac=ab0.618ab
考點(diǎn)二、平行線(xiàn)分線(xiàn)段成比例定理 (3~5分)
三條平行線(xiàn)截兩條直線(xiàn),所得的對(duì)應(yīng)線(xiàn)段成比例。
推論:
(1)平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(zhǎng)線(xiàn)),所得的對(duì)應(yīng)線(xiàn)段成比例。
逆定理:如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(zhǎng)線(xiàn))所得的對(duì)應(yīng)線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊。
(2)平行于三角形一邊且和其他兩邊相交的直線(xiàn)截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例。
考點(diǎn)三、相似三角形 (3~8分)
1、相似三角形的概念
對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形叫做相似三角形。相似用符號(hào)“∽”來(lái)表示,讀作“相似于”。相似三角形對(duì)應(yīng)邊的比叫做相似比(或相似系數(shù))。
2、相似三角形的基本定理
平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(zhǎng)線(xiàn))相交,所構(gòu)成的三角形與原三角形相似。
用數(shù)學(xué)語(yǔ)言表述如下:
de∥bc,∴ade∽abc
相似三角形的等價(jià)關(guān)系:
(1)反身性:對(duì)于任一abc,都有abc∽abc;
(2)對(duì)稱(chēng)性:若abc∽a’b’c’,則a’b’c’∽abc
(3)傳遞性:若abc∽a’b’c’,并且a’b’c’∽a’’b’’c’’,則abc∽a’’b’’c’’。
3、三角形相似的判定
(1)三角形相似的判定方法
①定義法:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似
②平行法:平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(zhǎng)線(xiàn))相交,所構(gòu)成的三角形與原三角形相似
③判定定理1:如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似,可簡(jiǎn)述為兩角對(duì)應(yīng)相等,兩三角形相似。
④判定定理2:如果一個(gè)三角形的兩條邊和另一個(gè)三角形的兩條邊對(duì)應(yīng)相等,并且?jiàn)A角相等,那么這兩個(gè)三角形相似,可簡(jiǎn)述為兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似。
⑤判定定理3:如果一個(gè)三角形的三條邊與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似,可簡(jiǎn)述為三邊對(duì)應(yīng)成比例,兩三角形相似
(2)直角三角形相似的判定方法
①以上各種判定方法均適用
②定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
③垂直法:直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原三角形相似。
4、相似三角形的性質(zhì)
(1)相似三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例
(2)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線(xiàn)的比與對(duì)應(yīng)角平分線(xiàn)的比都等于相似比
(3)相似三角形周長(zhǎng)的比等于相似比
(4)相似三角形面積的比等于相似比的平方。
5、相似多邊形
(1)如果兩個(gè)邊數(shù)相同的多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例,那么這兩個(gè)多邊形叫做相似多邊形。相似多邊形對(duì)應(yīng)邊的比叫做相似比(或相似系數(shù))
(2)相似多邊形的性質(zhì)
①相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例
②相似多邊形周長(zhǎng)的比、對(duì)應(yīng)對(duì)角線(xiàn)的比都等于相似比
③相似多邊形中的對(duì)應(yīng)三角形相似,相似比等于相似多邊形的相似比
④相似多邊形面積的比等于相似比的平方
6、位似圖形
如果兩個(gè)圖形不僅是相似圖形,而且每組對(duì)應(yīng)點(diǎn)所在直線(xiàn)都經(jīng)過(guò)同一個(gè)點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,此時(shí)的相似比叫做位似比。
直線(xiàn)和圓位置關(guān)系
①直線(xiàn)和圓無(wú)公共點(diǎn),稱(chēng)相離。 AB與圓O相離,d>r。
②直線(xiàn)和圓有兩個(gè)公共點(diǎn),稱(chēng)相交,這條直線(xiàn)叫做圓的割線(xiàn)。AB與O相交,d
③直線(xiàn)和圓有且只有一公共點(diǎn),稱(chēng)相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與O相切,d=r。(d為圓心到直線(xiàn)的距離)
平面內(nèi),直線(xiàn)Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線(xiàn)有2交點(diǎn),即圓與直線(xiàn)相交。
如果b^2-4ac=0,則圓與直線(xiàn)有1交點(diǎn),即圓與直線(xiàn)相切。
如果b^2-4ac<0,則圓與直線(xiàn)有0交點(diǎn),即圓與直線(xiàn)相離。
2.如果B=0即直線(xiàn)為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線(xiàn)與圓相離;
拓展閱讀:
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱(chēng)為x軸或橫軸,豎直的數(shù)軸稱(chēng)為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,iai還可以決定開(kāi)口大小,iai越大開(kāi)口就越小,iai越小開(kāi)口就越大.)則稱(chēng)y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
ii.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2+k [拋物線(xiàn)的頂點(diǎn)p(h,k)]
交點(diǎn)式:y=a(x-x₁)(x-x ₂) [僅限于與x軸有交點(diǎn)a(x₁ ,0)和 b(x₂,0)的拋物線(xiàn)]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a
iii.二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。
iv.拋物線(xiàn)的性質(zhì)
1.拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn) x = -b/2a。
對(duì)稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)p。特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)
2.拋物線(xiàn)有一個(gè)頂點(diǎn)p,坐標(biāo)為:p ( -b/2a ,(4ac-b^2)/4a )當(dāng)-b/2a=0時(shí),p在y軸上;當(dāng)δ= b^2-4ac=0時(shí),p在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。
當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6.拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)
δ= b^2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
δ= b^2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
δ= b^2-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。x的取值是虛數(shù)(x= -b±√b^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
v.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱(chēng)函數(shù))y=ax^2+bx+c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱(chēng)方程),即ax^2+bx+c=0
此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸:
當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當(dāng)h>0,k>0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2 +k的圖象;
當(dāng)h>0,k<0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k>0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k<0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線(xiàn) y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-