課程目錄

          1.1.1湊型法(求函數(shù)解析式)
1.1.2換元法(求函數(shù)解析式)
1.1.3待定系數(shù)法(求函數(shù)解析式)
1.1.4方程組法(求函數(shù)解析式)
1.1.5代入法(求函數(shù)解析式)
1.1.6遞推法(求函數(shù)解析式)
1.2.1直接觀(guān)察法(求函數(shù)值域)
1.2.2配方法(求函數(shù)值域)
1.2.2配方法(求函數(shù)值域)
1.2.3換元法(求函數(shù)值域)
1.2.4分離常數(shù)法(求函數(shù)值域)
1.2.6數(shù)形結(jié)合法(求函數(shù)值域)
1.2.7不等式法(求函數(shù)值域)
1.2.8導(dǎo)數(shù)法(求函數(shù)值域)
1.3.2解分段函數(shù)方程與不等式(分段函數(shù)題型)
1.3.3分段函數(shù)的單調(diào)性(分段函數(shù)題型)
1.3.4分段函數(shù)奇偶性的判斷(分段函數(shù)題型)
1.3.5分段函數(shù)的零點(diǎn)問(wèn)題(分段函數(shù)題型)
1.4.2零點(diǎn)存在區(qū)間的確定(零點(diǎn)題型)
2.1.2過(guò)曲線(xiàn)外一點(diǎn),求切線(xiàn)方程(導(dǎo)數(shù)的應(yīng)用)
2.1.3過(guò)曲線(xiàn)上一點(diǎn)(不一定是切點(diǎn)),求切線(xiàn)方程(導(dǎo)數(shù)的應(yīng)用)
2.2.1用導(dǎo)函數(shù)的圖像分析原函數(shù)(導(dǎo)數(shù)的應(yīng)用)
2.2.2用導(dǎo)函數(shù)分析原函數(shù)的單調(diào)性(導(dǎo)數(shù)的應(yīng)用)
2.2.4求參數(shù)的取值范圍(導(dǎo)數(shù)的應(yīng)用)
2.2.5導(dǎo)數(shù)應(yīng)用中的恒成立問(wèn)題(導(dǎo)數(shù)的應(yīng)用)
2.2.6利用導(dǎo)數(shù)證明不等式(導(dǎo)數(shù)的應(yīng)用)
3.1.1公式法(求數(shù)列的通項(xiàng)公式)
3.1.4累乘法(求數(shù)列的通項(xiàng)公式)
3.1.5構(gòu)造等差數(shù)列或等比數(shù)列法(求數(shù)列的通項(xiàng)公式)
3.2.1數(shù)列的簡(jiǎn)單性質(zhì)(1)
3.2.2數(shù)列的簡(jiǎn)單性質(zhì)(2)
3.2.2數(shù)列的簡(jiǎn)單性質(zhì)(2)
3.3.2分部求和法
3.3.3累加法與錯(cuò)位相減法
4.1.1角的變換(湊角法)
4.1.2三角函數(shù)名稱(chēng)變換的應(yīng)用
4.1.4常數(shù)變換(1的巧用)
4.1.4常數(shù)變換(1的巧用)

郵箱
huangbenjincv@163.com

海阳市| 文登市| 陇西县| 浦东新区| 石台县| 云阳县| 阿城市| 宕昌县| 武山县| 绥化市| 贵溪市| 仙游县| 陵水| 揭西县| 梧州市| 彭州市| 山阳县| 黄石市| 洛川县| 靖安县| 大田县| 新巴尔虎左旗| 丰都县| 寻乌县| 太保市| 永靖县| 余姚市| 日喀则市| 沭阳县| 镇平县| 肥东县| 乌兰县| 虹口区| 洛隆县| 武鸣县| 仁寿县| 冀州市| 新乡县| 基隆市| 西乌珠穆沁旗| 舒兰市|