課程目錄

           函數(shù)是中學數(shù)學的重要的基本概念之一,它與代數(shù)式、方程、不等式、三角函數(shù)、微積分等內(nèi)容有著密切的聯(lián)系,應(yīng)用十分廣泛。函數(shù)的基礎(chǔ)性強、概念多,其中函數(shù)的定義域、值域、奇偶性等是難點之一,是高考的常見的題型。下面就函數(shù)的值域的求法,舉例說如下。

一、 直接法(觀察法)
 通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域
例1求函數(shù) 的值域。
點撥:根據(jù)算術(shù)平方根的性質(zhì),先求出 的值域。
解:由算術(shù)平方根的性質(zhì),知 ≥0,
  故 ≥3。
  ∴函數(shù)的知域為 .
 點評:算術(shù)平方根具有雙重非負性,即:(1)被開方數(shù)的非負性,(2)值的非負性。
本題通過直接觀察算術(shù)平方根的性質(zhì)而獲解,這種方法對于一類函數(shù)的值域的求法,簡捷明了,不失為一種巧法。
練習1:求函數(shù)y=[x](0≤x≤5)的值域。(答案:值域為:{0,1,2,3,4,5})
練習2:求函數(shù) 的值域。(答案:值域為: )
 
教學過程:
值域定義:因變量y的取值范圍叫做函數(shù)的值域(或函數(shù)值的集合)。
函數(shù)值域的求法:
一、觀察法:由函數(shù)的定義域結(jié)合圖象,或直觀觀察,準確地判斷函數(shù)值域的方法。
 
f(x)是函數(shù)的符號,它代表函數(shù)圖象上每一個點的縱坐標的數(shù)值,因此函數(shù)圖像上所有點的縱坐標構(gòu)成一個集合,這個集合就是函數(shù)的值域。x是自變量,它代表著函數(shù)圖象上每一點的橫坐標,自變量的取值范圍就是函數(shù)的定義域。f是對應(yīng)法則的代表,它可以由f(x)的解析式?jīng)Q定。例如:f(x)=x^2+1,f代表的是把自變量x先平方再加1。x2+1的取值范圍(x2+1≥1)就是f(x)=x2+1的值域。如果說你弄清了上述問題,僅僅是對函數(shù)f(x)有了一個初步的認識,我們還需要對f(x)有更深刻的了解。
 

郵箱
huangbenjincv@163.com

永年县| 拉萨市| 望江县| 同江市| 淮滨县| 教育| 宿迁市| 稷山县| 慈溪市| 宜兰市| 新邵县| 城市| 浙江省| 清镇市| 温州市| 仪征市| 柞水县| 依兰县| 高安市| 晋州市| 龙岩市| 塔城市| 黑河市| 抚顺县| 梨树县| 仁布县| 海淀区| 武胜县| 手游| 合阳县| 永兴县| 丹江口市| 铜川市| 宿州市| 吉安县| 西华县| 博乐市| 临夏市| 城固县| 西华县| 敦煌市|