Linear Algebra ( 線性代數(shù) 英文版)課程-宋浩老師

  • 名稱:Linear Algebr
  • 分類:考研數(shù)學(xué)  
  • 觀看人數(shù):加載中
  • 時間:2021/8/31 15:51:13

一、 線性代數(shù)的考試大綱

【線性代數(shù)的考試大綱數(shù)學(xué)一、二、三其實有一點點的區(qū)別,可以忽略!(因為每年數(shù)學(xué)一、二、三的五個線代題基本全一樣)下面我給出的是數(shù)學(xué)二為藍(lán)本的大綱!全體同學(xué)按此復(fù)習(xí)!】

一、行列式

考試內(nèi)容

行列式的概念和基本性質(zhì) 行列式按行(列)展開定理

考試要求

1.了解行列式的概念,掌握行列式的性質(zhì).

2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式.

二、矩陣

考試內(nèi)容

矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價分塊矩陣及其運算 

考試要求

1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質(zhì).

2.掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).

3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件.理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.

4.了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.

5.了解分塊矩陣及其運算. 

三、向量

考試內(nèi)容

向量的概念 向量的線性組合和線性表示 向量組的線性相關(guān)與線性無關(guān) 向量組的極大線性無關(guān)組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量的內(nèi)積 線性無關(guān)向量組的的正交規(guī)范化方法 

考試要求

1.了解向量的概念,掌握向量的加法和數(shù)乘運算規(guī)律.

2.理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法.

3.理解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩.

4.理解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關(guān)系.

5.了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法.

四、線性方程組

考試內(nèi)容

線性方程組的克萊姆(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質(zhì)和解的結(jié)構(gòu) 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的通解

考試要求

1.會用克萊默法則解線性方程組.

2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.

3.理解齊次線性方程組的基礎(chǔ)解系及通解的概念,掌握齊次線性方程組基礎(chǔ)解系和通解的求法.

4.理解非齊次線性方程組的解的結(jié)構(gòu)及通解的概念.

5.掌握用初等行變換求解線性方程組.

五、矩陣的特征值及特征向量

考試內(nèi)容

矩陣的特征值和特征向量的概念、性質(zhì)  相似矩陣的概念及性質(zhì)  矩陣可相似對角化的充分必要條件及相似對角矩陣  實對稱矩陣的特征值、特征向量及其相似對角矩陣

考試要求

1.理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣特征值和特征向量.

2.理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣.

3.掌握實對稱矩陣的特征值和特征向量的性質(zhì).

六、二次型

考試內(nèi)容

二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標(biāo)準(zhǔn)形和規(guī)范形  用正交變換和配方法化二次型為標(biāo)準(zhǔn)形  二次型及其矩陣的正定性

考試要求

1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.

2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形.

3.理解正定二次型、正定矩陣的概念,并掌握其判別法.

衡阳县| 紫金县| 江华| 惠来县| 凤城市| 连城县| 金寨县| 湘乡市| 苍山县| 金堂县| 辉县市| 沂源县| 揭阳市| 南城县| 安阳县| 安乡县| 绵阳市| 武冈市| 泰宁县| 东辽县| 海伦市| 徐州市| 如皋市| 同德县| 呼图壁县| 精河县| 永平县| 萝北县| 崇文区| 夏河县| 比如县| 湘潭县| 司法| 城口县| 郑州市| 富阳市| 普安县| 荣昌县| 阿鲁科尔沁旗| 北流市| 牙克石市|