課程目錄

          在考研數(shù)學(xué)中,線性代數(shù)考試題型不多,計(jì)算方法比較初等,但是往往計(jì)算量比較大,導(dǎo)致很多考生對線性代數(shù)感到棘手。從理論的角度出發(fā),線性代數(shù)的很多概念和性質(zhì)之間的聯(lián)系很多,特別是每年線性代數(shù)的兩道大題考試內(nèi)容,所涉及到的概念與方法之間需要考生著重掌握。
線性代數(shù)的概念很多,重要的有:代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(矩陣、向量組),線性組合與線性表出,線性相關(guān)與線性無關(guān),極大線性無關(guān)組,基礎(chǔ)解系與通解,解的結(jié)構(gòu)與解空間,特征值與特征向量,相似與相似對角化,二次型的標(biāo)準(zhǔn)形與規(guī)范形,正定,合同變換與合同矩陣。線性代數(shù)中運(yùn)算法則多,應(yīng)整理清楚不要混淆,基本運(yùn)算與基本方法要過關(guān),重要的有:行列式(數(shù)字型、字母型)的計(jì)算,求逆矩陣,求矩陣的秩,求方陣的冪,求向量組的秩與極大線性無關(guān)組,線性相關(guān)的判定或求參數(shù),求基礎(chǔ)解系,求非齊次線性方程組的通解,求特征值與特征向量(定義法,特征多項(xiàng)式基礎(chǔ)解系法),判斷與求相似對角矩陣,用正交變換化實(shí)對稱矩陣為對角矩陣(亦即用正交變換化二次型為標(biāo)準(zhǔn)形)。
考研數(shù)學(xué)中線性代數(shù)在出題的過程中,難度也不小,所以考生們不得忽視,大家要提分也需慎重,下面凱程考研數(shù)學(xué)老師就給大家介紹考研數(shù)學(xué)線性代數(shù)必須抓住的提分點(diǎn)。線性代數(shù)其實(shí)并不難,但是簡單的科目復(fù)習(xí)陷阱更多,大家要提分也需慎重。凱程考研線建議考生從下面四點(diǎn)著手復(fù)習(xí)線性代數(shù),爭取拿下高分。        

郵箱
huangbenjincv@163.com

南投市| 霍山县| 清丰县| 靖西县| 平凉市| 开原市| 甘洛县| 辛集市| 侯马市| 喀喇沁旗| 阜阳市| 如东县| 定远县| 玉环县| 新干县| 东台市| 右玉县| 彰化市| 巴青县| 阳东县| 华容县| 太湖县| 海城市| 九龙城区| 元朗区| 湘潭市| 响水县| 陇南市| 岑溪市| 青田县| 秀山| 博乐市| 都匀市| 新余市| 武邑县| 镇康县| 固始县| 承德县| 武胜县| 依兰县| 乌什县|