課程目錄

【清華大學(xué)】邏輯學(xué)概論精品視頻

課程概況“邏輯”一詞很常用,但作為一門學(xué)科和課程,“邏輯學(xué)”涉及的內(nèi)容范圍,比“邏輯”一詞日常的用法范圍要小得多。它的研究對(duì)象是推理,更準(zhǔn)確地說,是“有效推理形式”。什么樣的是有效推理形式?怎樣判定?怎樣生成?邏輯學(xué)中要給出基本的方法。 作為面向非邏輯學(xué)專業(yè)學(xué)生的邏輯學(xué)概論課,本課程的著眼點(diǎn)不僅僅在于講授邏輯學(xué)中的具體內(nèi)容,而更致力于使學(xué)生了解邏輯學(xué)的基本思路、準(zhǔn)則和方法。能否和如何運(yùn)用于實(shí)踐,則有待于我們的共同努力。 主要內(nèi)容包括:中外邏輯發(fā)展簡(jiǎn)史,復(fù)合命題的推理,命題演算,性質(zhì)命題的推理,關(guān)系命題的推理,謂詞演算概要,歸納推理簡(jiǎn)介,非經(jīng)典(非標(biāo)準(zhǔn))邏輯初步等。課程大綱第一講 什么是邏輯學(xué)

1.1 “邏輯"和邏輯學(xué)

1.2 推理和推理形式

1.3 有效推理形式

1.4 邏輯學(xué)的特點(diǎn)

1.5 邏輯學(xué)的基本準(zhǔn)則

1.6 邏輯學(xué)和其他學(xué)科的關(guān)系

1.7 關(guān)于本課程《邏輯學(xué)概論》

第一講練習(xí)題第二講 邏輯學(xué)的產(chǎn)生和發(fā)展

2.1 中國(guó)古代邏輯思想(上)

2.2 中國(guó)古代邏輯思想(中)

2.3 中國(guó)古代邏輯思想(下)

2.4 印度古代邏輯

2.5 古希臘和中世紀(jì)邏輯

2.6 近代西方邏輯

2.7 數(shù)理邏輯的提出和實(shí)現(xiàn)

2.8 數(shù)理邏輯的發(fā)展

第二講練習(xí)題第三講 命題聯(lián)結(jié)詞及其基本推理形式

3.1 推理和命題

3.2 基本命題和復(fù)合命題

3.3 常用命題聯(lián)結(jié)詞及其基本推理形式(1)

3.4 常用命題聯(lián)結(jié)詞及其基本推理形式(2)

3.5 常用命題聯(lián)結(jié)詞及其基本推理形式(3)

3.6 常用命題聯(lián)結(jié)詞及其基本推理形式(4)

3.7 常用命題聯(lián)結(jié)詞及其基本推理形式(5)

3.8 常用命題聯(lián)結(jié)詞及其基本推理形式(6)

3.9 常用命題聯(lián)結(jié)詞及其基本推理形式(7)

第三講練習(xí)題第四講 復(fù)合命題的推理: 有效推理形式的判定

4.1 重言式、矛盾式和可滿足式

4.2 具體推理轉(zhuǎn)換為推理形式

4.3 推理形式轉(zhuǎn)換為復(fù)合命題形式

4.4 有效推理形式的判定:真值表法

4.5 有效推理形式的判定:歸謬賦值法

第四講練習(xí)題


郵箱
huangbenjincv@163.com

达州市| 屯门区| 兴海县| 长葛市| 卢湾区| 巴彦县| 枣阳市| 高州市| 昆明市| 五家渠市| 乐亭县| 钟祥市| 青阳县| 伊川县| 池州市| 昆山市| 临汾市| 阿勒泰市| 青铜峡市| 鲁甸县| 黎平县| 株洲市| 德州市| 盐城市| 澎湖县| 上饶市| 玉环县| 桃园县| 南丹县| 红安县| 扬州市| 金川县| 龙游县| 庆城县| 林芝县| 临沂市| 荃湾区| 崇明县| 措勤县| 北票市| 宝应县|