課程目錄

【清華大學(xué)】邏輯學(xué)概論精品視頻

課程概況“邏輯”一詞很常用,但作為一門學(xué)科和課程,“邏輯學(xué)”涉及的內(nèi)容范圍,比“邏輯”一詞日常的用法范圍要小得多。它的研究對(duì)象是推理,更準(zhǔn)確地說(shuō),是“有效推理形式”。什么樣的是有效推理形式?怎樣判定?怎樣生成?邏輯學(xué)中要給出基本的方法。 作為面向非邏輯學(xué)專業(yè)學(xué)生的邏輯學(xué)概論課,本課程的著眼點(diǎn)不僅僅在于講授邏輯學(xué)中的具體內(nèi)容,而更致力于使學(xué)生了解邏輯學(xué)的基本思路、準(zhǔn)則和方法。能否和如何運(yùn)用于實(shí)踐,則有待于我們的共同努力。 主要內(nèi)容包括:中外邏輯發(fā)展簡(jiǎn)史,復(fù)合命題的推理,命題演算,性質(zhì)命題的推理,關(guān)系命題的推理,謂詞演算概要,歸納推理簡(jiǎn)介,非經(jīng)典(非標(biāo)準(zhǔn))邏輯初步等。課程大綱第一講 什么是邏輯學(xué)

1.1 “邏輯"和邏輯學(xué)

1.2 推理和推理形式

1.3 有效推理形式

1.4 邏輯學(xué)的特點(diǎn)

1.5 邏輯學(xué)的基本準(zhǔn)則

1.6 邏輯學(xué)和其他學(xué)科的關(guān)系

1.7 關(guān)于本課程《邏輯學(xué)概論》

第一講練習(xí)題第二講 邏輯學(xué)的產(chǎn)生和發(fā)展

2.1 中國(guó)古代邏輯思想(上)

2.2 中國(guó)古代邏輯思想(中)

2.3 中國(guó)古代邏輯思想(下)

2.4 印度古代邏輯

2.5 古希臘和中世紀(jì)邏輯

2.6 近代西方邏輯

2.7 數(shù)理邏輯的提出和實(shí)現(xiàn)

2.8 數(shù)理邏輯的發(fā)展

第二講練習(xí)題第三講 命題聯(lián)結(jié)詞及其基本推理形式

3.1 推理和命題

3.2 基本命題和復(fù)合命題

3.3 常用命題聯(lián)結(jié)詞及其基本推理形式(1)

3.4 常用命題聯(lián)結(jié)詞及其基本推理形式(2)

3.5 常用命題聯(lián)結(jié)詞及其基本推理形式(3)

3.6 常用命題聯(lián)結(jié)詞及其基本推理形式(4)

3.7 常用命題聯(lián)結(jié)詞及其基本推理形式(5)

3.8 常用命題聯(lián)結(jié)詞及其基本推理形式(6)

3.9 常用命題聯(lián)結(jié)詞及其基本推理形式(7)

第三講練習(xí)題第四講 復(fù)合命題的推理: 有效推理形式的判定

4.1 重言式、矛盾式和可滿足式

4.2 具體推理轉(zhuǎn)換為推理形式

4.3 推理形式轉(zhuǎn)換為復(fù)合命題形式

4.4 有效推理形式的判定:真值表法

4.5 有效推理形式的判定:歸謬賦值法

第四講練習(xí)題


郵箱
huangbenjincv@163.com

固原市| 明溪县| 邵阳市| 独山县| 米林县| 福鼎市| 仁布县| 贡嘎县| 闽侯县| 贡觉县| 安吉县| 华宁县| 庆安县| 高密市| 米易县| 渭源县| 古丈县| 宜宾县| 龙岩市| 林周县| 砚山县| 金坛市| 都江堰市| 德格县| 哈巴河县| 本溪市| 宜兴市| 化德县| 宁城县| 侯马市| 隆林| 富民县| 茶陵县| 石屏县| 大竹县| 柞水县| 子长县| 南充市| 徐州市| 岑巩县| 大方县|