課程簡(jiǎn)介   矩陣是許多理工學(xué)科如數(shù)學(xué)物理、電子通信、系統(tǒng)控制、模式識(shí)別、土木建 筑、航空航天、經(jīng)濟(jì)管理、計(jì)算機(jī)等學(xué)科最重要的數(shù)學(xué)工具之一。矩陣?yán)碚摵途 性代數(shù)本身極富創(chuàng)造性, 其創(chuàng)造性豐富了其它學(xué)科的內(nèi)容, 推動(dòng)了其它學(xué)科的發(fā) 展。 《工程矩陣?yán)碚摗氛n程主要包括矩陣特征值、 Jordan 標(biāo)準(zhǔn)型、內(nèi)積空間及標(biāo) 準(zhǔn)正交基、矩陣分解、矩陣范數(shù)、矩陣函數(shù)、矩陣廣義逆及矩陣張量積及矩陣導(dǎo) 數(shù)等內(nèi)容。    2.  學(xué)習(xí)重點(diǎn)與難點(diǎn)   第一章   線性空間與線性映射。 學(xué)習(xí)和掌握線性空間、線性子空間、線性映 射以及線性變換的不變子空間等知識(shí)。   重點(diǎn)內(nèi)容:基與坐標(biāo)、坐標(biāo)變換,線性映射及其值域與核,特征值和特征向 量,矩陣的相似對(duì)角形。   難點(diǎn)內(nèi)容:不變子空間。   第二章    - 矩陣與矩陣的 Jordan 標(biāo)準(zhǔn)形。 學(xué)習(xí)和掌握  - 矩陣及 Smith 標(biāo)準(zhǔn)

郵箱
huangbenjincv@163.com

潮州市| 岱山县| 资源县| 启东市| 蕉岭县| 阳春市| 东源县| 睢宁县| 米易县| 潜山县| 临安市| 永善县| 巴中市| 博罗县| 吉林省| 彭山县| 恩平市| 项城市| 宁海县| 镇康县| 湘潭县| 诸暨市| 玉田县| 米泉市| 丹阳市| 正定县| 崇信县| 海口市| 通化市| 潞西市| 淄博市| 定兴县| 宽城| 百色市| 泰兴市| 黔江区| 徐州市| 南木林县| 民县| 五峰| 沁阳市|