《線性代數(shù)》是工、理、管諸學(xué)科共同開(kāi)設(shè)的一門(mén)重要的基礎(chǔ)理論課程,也是碩士研究生入學(xué)全國(guó)統(tǒng)一考試中必考的數(shù)學(xué)課程之一。

 
本課程主要講授行列式、矩陣及其運(yùn)算、矩陣的初等變換、向量組的線性相關(guān)性、矩陣的相似變換、二次型等內(nèi)容。該課程所體現(xiàn)的幾何觀念與代數(shù)方法之間的聯(lián)系、從具體概念抽象出來(lái)的公理化方法、以及嚴(yán)謹(jǐn)?shù)倪壿嬐谱C、巧妙的歸納綜合等,對(duì)于強(qiáng)化學(xué)生的數(shù)學(xué)訓(xùn)練,培養(yǎng)學(xué)生的邏輯推理和抽象思維能力、空間直觀和想象能力具有重要的作用。隨著計(jì)算機(jī)及其應(yīng)用技術(shù)的飛速發(fā)展,線性代數(shù)這門(mén)課程的作用與地位顯得日益重要。《線性代數(shù)》是工、理、管諸學(xué)科共同開(kāi)設(shè)的一門(mén)重要的基礎(chǔ)理論課程,也是碩士研究生入學(xué)全國(guó)統(tǒng)一考試中必考的數(shù)學(xué)課程之一。本課程主要講授行列式、矩陣及其運(yùn)算、矩陣的初等變換、向量組的線性相關(guān)性、矩陣的相似變換、二次型等內(nèi)容。該課程所體現(xiàn)的幾何觀念與代數(shù)方法之間的聯(lián)系、從具體概念抽象出來(lái)的公理化方法、以及嚴(yán)謹(jǐn)?shù)倪壿嬐谱C、巧妙的歸納綜合等,對(duì)于強(qiáng)化學(xué)生的數(shù)學(xué)訓(xùn)練,培養(yǎng)學(xué)生的邏輯推理和抽象思維能力、空間直觀和想象能力具有重要的作用。隨著計(jì)算機(jī)及其應(yīng)用技術(shù)的飛速發(fā)展,線性代數(shù)這門(mén)課程的作用與地位顯得日益重要。而作為離散化和數(shù)值計(jì)算理論基礎(chǔ)的線性代數(shù),也為解決實(shí)際問(wèn)題提供了強(qiáng)有力的數(shù)學(xué)工具,并為進(jìn)一步學(xué)習(xí)后繼課程和將來(lái)的工作實(shí)踐奠定必要的數(shù)學(xué)基礎(chǔ)。
 

郵箱
huangbenjincv@163.com

昭苏县| 安泽县| 平舆县| 莱阳市| 犍为县| 博野县| 汉中市| 台北市| 福泉市| 绥德县| 同德县| 安塞县| 马尔康县| 府谷县| 临清市| 广德县| 库伦旗| 宁强县| 芜湖市| 荥经县| 金寨县| 扶风县| 和田县| 嘉鱼县| 科尔| 永春县| 昭觉县| 永嘉县| 大邑县| 昌平区| 光山县| 南投市| 准格尔旗| 新宁县| 镇巴县| 棋牌| 上虞市| 合山市| 墨江| 西丰县| 休宁县|